來源:學而思西安中考網(wǎng)整理 2011-09-15 10:11:27
全等三角形的性質與判定
定義
能夠完全重合(大小,形狀都相等的三角形)的兩個三角形稱為全等三角形。
當兩個三角形完全重合時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;
(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;
(3)有公共邊的,公共邊一定是對應邊;
(4)有公共角的,角一定是對應角;
(5)有對頂角的,對頂角一定是對應角;
判定公理
1、三組對應邊分別相等的兩個三角形全等(簡稱SSS或“邊邊邊”),這一條也說明了三角形具有穩(wěn)定性的原因!
2、有兩邊及其夾角對應相等的兩個三角形全等(SAS或“邊角邊”)。
3、有兩角及其夾邊對應相等的兩個三角形全等(ASA或“角邊角”)。
4、有兩角及其一角的對邊對應相等的兩個三角形全等(AAS或“角角邊”)
5、直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(HL或“斜邊,直角邊”)
SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。
6、三條中線(或高、角平分線)分別對應相等的兩個三角形全等。
歡迎使用手機、平板等移動設備訪問中考網(wǎng),2023中考一路陪伴同行!>>點擊查看