免费人成网上在线观看,日本高清在线不卡中文字幕,中文字幕巨大乳在线看,亚洲色国产电影在线观看

      Image Modal
      中考網(wǎng)
      全國站
      快捷導(dǎo)航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分?jǐn)?shù)線 中考志愿填報(bào) 各地中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
      您現(xiàn)在的位置:中考 > 初中資源庫 > 初中練習(xí)題 > 初二語文 > 正文

      第十三講 梯形

      來源:初中數(shù)學(xué)競賽 2005-09-09 16:12:03

      中考真題

      免費(fèi)領(lǐng)資料
      與平行四邊形一樣,梯形也是一種特殊的四邊形,其中等腰梯形與直角梯形占有重要地位,本講就來研究它們的有關(guān)性質(zhì)的應(yīng)用.

        1 如圖2-43所示.在直角三角形ABC中,E是斜邊AB上的中點(diǎn),DAC的中點(diǎn),DFECBC延長線于F.求證:四邊形EBFD是等腰梯形.

        分析 因?yàn)?/FONT>E,D是三角形ABCAB,AC的中點(diǎn),所以EDBF.此外,還要證明(1)EB=DF;(2)EB不平行于DF

         因?yàn)?/FONT>E,D是△ABC的邊AB,AC的中點(diǎn),所以

      EDBF

        又已知DFEC,所以ECFD是平行四邊形,所以

        EC=DF. ①

        ERtABC斜邊AB上的中點(diǎn),所以

        EC=EB. ②

        由①,②

      EB=DF

        下面證明EBDF不平行.

        EBDF,由于ECDF,所以有ECEB,這與ECEB交于E矛盾,所以EBDF

        根據(jù)定義,EBFD是等腰梯形.

        2 如圖2-44所示.ABCD是梯形, ADBC, ADBCAB=ACABAC,BD=BCAC,BD交于O.求∠BCD的度數(shù).

        分析 由于△BCD是等腰三角形,若能確定頂點(diǎn)∠CBD的度數(shù),則底角∠BCD可求.由等腰RtABC可求知斜邊BC(BD)的長.又梯形的高,即RtABC斜邊上的中線也可求出.通過添輔助線可構(gòu)造直角三角形,求出∠BCD的度數(shù).

         DDEECE,則DE的長度即為等腰RtABC斜邊上的高AF.設(shè)AB=a,由于△ABF也是等腰直角三角形,由勾股定理知

      AF2+BF2=AB2,

        即

       

        

        又

      BC2=AB2+AC2=2AB2=2a2

        由于BC=DB,所以,在RtBED中,

       

        

        從而∠EBD=30°(直角三角形中30°角的對邊等于斜邊一半定理的逆定理).在△CBD中,

        

        3 如圖2-45所示.直角梯形ABCD中,ADBC,∠A=90°,∠ADC=135°,CD的垂直平分線交BCN,交AB延長線于F,垂足為M.求證:AD=BF

        分析 MFDC的垂直平分線,所以ND=NC.由ADBC及∠ADC=135°知,∠C=45°,從而∠NDC=45°,∠DNC=90°,所以ABND是矩形,進(jìn)而推知△BFN是等腰直角三角形,從而AD=BN=BF

         連接DN.因?yàn)?/FONT>N是線段DC的垂直平分線MF上的一點(diǎn),所以ND=NC.由已知,ADBC及∠ADC=135°知

      C=45°,

        從而

      NDC=45°.

        在△NDC中,

      DNC=90°(=DNB),

        所以ABND是矩形,所以

      AFND,∠F=DNM=45°.

        BNF是一個(gè)含有銳角45°的直角三角形,所以BN=BF.又

      AD=BN,

        所以 AD=BF

        4 如圖2-46所示.直角梯形ABCD中,∠C=90°,ADBC,AD+BC=ABECD的中點(diǎn).若AD=2,BC=8,求△ABE的面積.

        分析 由于AB=AD+BC,即一腰AB的長等于兩底長之和,它啟發(fā)我們利用梯形的中位線性質(zhì)(這個(gè)性質(zhì)在教材中是梯形的重要性質(zhì),我們將在下一講中深入研究它,這里只引用它的結(jié)論).取腰AB的中點(diǎn)F,(BC).過AAGBCG,交EFH,則AH,GH分別是△AEF與△BEF的高,所以

      AG2=AB2-BG2=(8+2)2-(8-2)2=100-36=64,

        所以AG=8.這樣SABE(=SAEF+SBEF)可求.

         AB中點(diǎn)F,連接EF.由梯形中位線性質(zhì)知

      EFAD(BC),

        AAGBCG,交EFH.由平行線等分線段定理知,AH=GHAH,GH均垂直于EF.在RtABG中,由勾股定理知

        AG2=AB2-BG2

         =(AD+BC)2-(BC-AD)2

         =102-62=82,

        所以 AG=8,

        從而 AH=GH=4,

        所以

        SABE=SAEF+SBEF

           

          

           

        5 如圖2-47所示.四邊形ABCF中,ABDF,∠1=2,AC=DF,FCAD

        (1)求證:ADCF是等腰梯形;

        (2)若△ADC的周長為16厘米(cm)AF=3厘米,AC-FC=3厘米,求四邊形ADCF的周長.

        分析 欲證ADCF是等腰梯形.歸結(jié)為證明ADCF,AF=DC,不要忘了還需證明AF不平行于DC.利用已知相等的要素,應(yīng)從全等三角形下手.計(jì)算等腰梯形的周長,顯然要注意利用AC-FC=3厘米的條件,才能將△ADC的周長過渡到梯形的周長.

         (1)因?yàn)?/FONT>ABDF,所以∠1=3.結(jié)合已知∠1=2,所以∠2=3,所以

      EA=ED

        AC=DF,

        所以 EC=EF

        所以△EAD及△ECF均是等腰三角形,且頂角為對頂角,由三角形內(nèi)角和定理知∠3=4,從而ADCF.不難證明

      ACD≌△DFA(SAS),

        所以 AF=DC

        AFDC,則ADCF是平行四邊形,則AD=CFFCAD矛盾,所以AF不平行于DC

        綜上所述,ADCF是等腰梯形.

        (2)四邊形ADCF的周長=AD+DC+CF+AF. ①

        由于

        ADC的周長=AD+DC+AC=16(厘米), ②

        AF=3(厘米), ③

        FC=AC-3, ④

        將②,③,④代入①

        四邊形ADCF的周長=AD+DC+(AC-3)+AF

                =(AD+DC+AC)-3+3

                =16(厘米)

        6 如圖2-48所示.等腰梯形ABCD中,ABCD,對角線AC,BD所成的角∠AOB=60°,PQ,R分別是OA,BCOD的中點(diǎn).求證:△PQR是等邊三角形.

        分析 首先從P,R分別是OA,OD中點(diǎn)知,欲證等邊三角形PQR的邊長應(yīng)等于等腰梯形腰長之半,為此,只需證明QR,QP等于腰長之半即可.注意到△OAB與△OCD均是等邊三角形,P,R分別是它們邊上的中點(diǎn),因此,BPOA,CROD.在RtBPCRtCRB中,PQRQ分別是它們斜邊BC(即等腰梯形的腰)的中線,因此,PQ=RQ=BC之半.問題獲解.

         因?yàn)樗倪呅?/FONT>ABCD是等腰梯形,由等腰梯形的性質(zhì)知,它的同一底上的兩個(gè)角及對角線均相等.進(jìn)而推知,∠OAB=OBA及∠OCD=ODC.又已知,ACBD60°角,所以,△ODC與△OAB均為正三角形.連接BP,CR,則BPOACROD.在RtBPCRtCRB中,PQRQ分別是它們的斜邊BC上的中線,所以

        

        RP是△OAD的中位線,所以

        

        因?yàn)?AD=BC, ③

        由①,②,③得

      PQ=QR=RP,

        即△PQR是正三角形.

        說明 本題證明引人注目之處有二:

        (1)充分利用特殊圖形中特殊點(diǎn)所帶來的性質(zhì),如正三角形OABOA上的中點(diǎn)P,可帶來BPOA的性質(zhì),進(jìn)而又引出直角三角形斜邊中線PQ等于斜邊BC之半的性質(zhì).

        (2)等腰梯形的“等腰”就如一座橋梁“接通”了“兩岸”的髀使△PQR的三邊相等.  

      練習(xí)十三

        1.如圖2-49所示.梯形ABCD中,ADBC,AB=AD=DC,BDCD.求∠A的度數(shù).

        2.如圖2-50所示.梯形ABCD中,ADBC,AEDCBCE,△ABE的周長=13厘米,AD=4厘米.求梯形的周長.

       

        3.如圖2-51所示.梯形ABCD中,ABCD,∠A+B=90°,AB=p,CD=q,E,F分別為AB,CD的中點(diǎn).求EF

        4.如圖2-52所示.梯形ABCD中,ADBCM是腰DC的中點(diǎn),MNABN,且MN=bAB=a.求梯形ABCD的面積.

       

        5.已知:梯形ABCD中,DCAB,∠A=36°,∠B=54°,M,N分別是DCAB的中點(diǎn).求證:

         歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2025中考一路陪伴同行!>>點(diǎn)擊查看

      • 歡迎掃描二維碼
        關(guān)注中考網(wǎng)微信
        ID:zhongkao_com

      • 歡迎掃描二維碼
        關(guān)注高考網(wǎng)微信
        ID:www_gaokao_com

      • 歡迎微信掃碼
        關(guān)注初三學(xué)習(xí)社
        中考網(wǎng)官方服務(wù)號