來源:網(wǎng)絡(luò) 作者:匿名 2009-09-23 14:05:46
在初中數(shù)學(xué)教學(xué)中,教師害怕學(xué)生出現(xiàn)解題錯誤,對錯誤采取嚴(yán)厲禁止的態(tài)度是司空見慣的。在這種懼怕心理支配下,教師只注重教給學(xué)生正確的結(jié)論,而不注重揭示知識形成的過程,害怕啟發(fā)學(xué)生進行討論會得出錯誤的結(jié)論。長此以往,學(xué)生只接受了正確的知識,但對錯誤的出現(xiàn)缺乏心理準(zhǔn)備,看不出錯誤或看出錯誤但改不對。持這種態(tài)度的教師只關(guān)心學(xué)生用對知識而忽視學(xué)生會用知識。例如,在講有理數(shù)運算時,由于只注重得出正確的結(jié)果,強調(diào)運算法則、運算順序,而對運用運算律簡化運算注意不夠,但后者對發(fā)展學(xué)生運算能力卻更為重要?傊@種對待錯誤的態(tài)度會對教學(xué)帶來一些消極的影響。
事實上,錯誤是正確的先導(dǎo),成功的開始。學(xué)生所犯錯誤及其對錯誤的認(rèn)識,是學(xué)生知識寶庫的重要組成部分。筆者至今仍然對學(xué)生時代的一節(jié)數(shù)學(xué)課記憶猶新。
當(dāng)時老師講過a\+2-b\+2=(a+b)(a-b)后,讓我們自己分解x\+4-y\+4。很快大家就做完了。老師一邊巡視一邊督促檢查。但在最后教師宣布只有1人做對時,我們都感到非常吃驚。我們把x\+4-y\+4分解為(x\+2+y\+2)(x\+2-y\+2)錯在哪里呢?做對同學(xué)的答案是(x\+2+y\+2)(x+y)(x-y),兩相對照,我們發(fā)現(xiàn)原來x\+2-y\+2還可以繼續(xù)分解。于是,分解因式要進行到每個因式都不能再分解為止給每個同學(xué)都留下了深刻的印象。由此也可以看出,利用學(xué)生典型錯誤并進行正確誘導(dǎo)會收到良好的教學(xué)效果。
基于上述原因,教師對待錯誤的懼怕心理和嚴(yán)厲態(tài)度轉(zhuǎn)變?yōu)槌惺苄睦砗蛯捜輵B(tài)度是十分有意義的。因為數(shù)學(xué)學(xué)習(xí)實際上是不斷地提出假設(shè),修正假設(shè),使學(xué)生對數(shù)學(xué)的認(rèn)知水平不斷復(fù)雜化,并逐漸接近成熟的過程。從這個意義上說,錯誤不過是學(xué)生在數(shù)學(xué)學(xué)習(xí)過程中所做的某種嘗試,它只能反映學(xué)生在數(shù)學(xué)學(xué)習(xí)的某個階段的水平,而不能代表其最終的實際水平。此外,正是由于這些假設(shè)的不斷提出與修正,才使學(xué)生的能力不斷提高。因此,揭示錯誤是為了最后消滅錯誤,我們所說的承受與寬容也是相對于這一過程而言的。在教學(xué)中給學(xué)生展示的這一嘗試、修正的過程,是與學(xué)生獨立解題的過程相吻合的。因而學(xué)生在教師教學(xué)過程中學(xué)到的不僅僅是正確的結(jié)論,而且領(lǐng)略了探索、調(diào)試的過程,這對學(xué)生的解題過程會產(chǎn)生有益的影響,使學(xué)生學(xué)會分析,自己發(fā)現(xiàn)錯誤,改正錯誤。教師具備這樣的承受心理與寬容態(tài)度,才會耐心尋找學(xué)生解題錯誤的原因,并做出適當(dāng)?shù)奶幚怼?/p>
歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看